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Abstract

Shape matching or image registration, which is often formulated as a point matching
problem, is frequently encountered in image analysis, computer vision, and pattern recog-
nition. Although the problem of registering rigid shapes was widely studied, non-rigid
shape matching has recently received more and more attention. For non-rigid shapes,
most neighboring points cannot move independently under deformation due to physical
constraints. Therefore, though the absolute distance between two points may change
significantly, the neighborhood of a point is well preserved in general. Based on this
observation, we formulate point matching as a graph matching problem. Each point is a
node in the graph, and two nodes are connected by an edge if their Euclidean distance is
less than a threshold. The optimal match between two graphs is the one that maximizes
the number of matched edges. The shape context distance is used to initialize the graph
matching, and relaxation labeling (after enforcing one-to-one matching) is used to refine
the matching results. Non-rigid deformation is overcome by bringing one shape closer
to the other in each iteration using deformation parameters estimated from the current
point correspondence. Experiments on real and synthesized data demonstrate the effec-
tiveness of our approach: it outperforms shape context and TPS-RPM algorithms under
non-rigid deformation and noise on a public data set.
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1 Introduction

Shape matching or image registration is often encountered in image analysis, computer
vision, and pattern recognition. A shape may be represented as a set of features at
different levels, such as points, line segments, curves, or surfaces, and shape matching
may be performed on these representations. The survey paper by Loncaric [1] covers
the extraction and representation of a shape. Definitions of the distance between two
features (i.e., point, lines, or curves) and their use in shape matching can be found in [2].
In general, the higher the level of a feature, the more difficult it is to extract reliably. The
extraction of a set of point representation, for example, is easy, and it is more general since
lines and surfaces can be discretized as a set of points. Although such discretization is by
no means optimal, in many cases, reasonable matching results may be achieved [3]. Point
matching, therefore, is often used in applications such as pose estimation [4,5], medical
image registration [6], surface registration [7, 8], object recognition [9], and handwriting
recognition [10,11]. In this paper, we focus on the point pattern based shape matching.

1.1 Overview of Our Approach

For non-rigid shapes, most neighboring points cannot move independently under defor-
mation due to physical constraints. Such constraints may be represented as the ordering
of points on a curve. Sebastian et al. [12] demonstrated the effectiveness of point order-
ing in matching curves, but for general shapes other than curves, local point ordering is
hard to describe, and is ignored in many point matching algorithms. For example, in
the shape context algorithm [9], neighboring points in one shape may be matched to two
points far apart in the other shape. We observed that although the absolute distance
between two points may change significantly under a non-rigid deformation, the neigh-
borhood of a point is generally well preserved. As a primary contribution of this paper,
we formulate point matching as a graph matching problem. Each point is a node in the
graph, and two nodes are connected by an edge if their Euclidean distance is less than a
threshold. The optimal match between two graphs is the one that maximizes the number
of matched edges, so we explicitly search for an optimal match which preserves the point
neighborhood best.

Graph matching is an NP-hard problem. Exhaustive or branch-and-bound search for
a global optimal solution is only realistic for graphs with few nodes [13]. Local optimal
search techniques are often used in real applications, whose performance depends on the
initial solution. In this paper, we use the shape context distance to initialize the graph
matching, followed by a relaxation labeling process to refine the match. A difference
to the previous applications of relaxation labeling [14, 15] is that we use it to solve
a constrained optimization problem. The relaxation labeling process is guaranteed to
converge to a local optimal solution [16]. In the previous work, it is used in an ad hoc
way without an objective function to be optimized, so there is no guarantee about the
quality of the solution. Furthermore, unlike the previous work where many-to-one is
allowed, we enforce one-to-one matching in our approach.

There are two unknown variables in a shape matching problem: the correspondence
and the transformation [17]. Since solving for either without information regarding the
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other is quite difficult, most approaches to non-rigid shape matching use iterated ap-
proaches. Given an estimate of the correspondence, the transformation may be estimated
and used to update the correspondence. If these two steps are well designed, such an
iterated process will converge and improve the initial result. In this paper, the common
framework of iterated correspondence and transformation estimation is used [9]. In the
first iteration, the affine transformation between two shapes is estimated and corrected.
A robust Least Median Squares (LMS) estimator is exploited to estimate the affine trans-
formation. In the following iterations, Thin Plate Spline (TPS) is used to bring a shape
closer to the other based on the current point matching results.

Experiments on real and synthesized data demonstrate the effectiveness of our ap-
proach. It is more robust under deformation and noise than two state-of-the-art algo-
rithms, the shape context [9] and TPS-RPM algorithms [17], on a public data set.

1.2 Previous Work

Shapes can be roughly categorized as rigid or non-rigid, and the realization of a shape may
undergo various deformations in captured images. With small number of transformation
parameters (six for a 2-D affine transformation), rigid shape matching is relatively easy.
Rigid shape matching under the affine [3,7] or projective transformation [5] has been
widely studied with an extensive literature. Since it is impossible to cover them well
in this section without omitting many excellent works, the reader is referred to other
survey papers for a large bibliography [18,19]. Although many point matching algorithms
developed for rigid shapes can tolerate some degree of noise or local distortions, large
free-form deformation is a significant challenge. Recently, point matching for non-rigid
shapes has received more and more attention. In the following literature review, we will
focus on publications on non-rigid shape matching.

Point matching for non-rigid shapes is hard because both linear distortions (i.e., trans-
lation, rotation, scale change, and shear) and non-linear distortions must be compensated
for. Therefore, the common framework of iterated correspondence and transformation
estimation is widely used. The Iterated Closest Point (ICP) algorithm, a well-known
heuristic approach proposed by Besl and McKay, is one example [3,7]. Assuming two
shapes are roughly aligned, for each point in one shape, the closest point in the other
shape is taken as the current estimate of the correspondence. The affine transformation
estimated with the current correspondence will then bring two shapes closer. ICP was
later extended for non-rigid free-form surfaces [8]. The framework consists of three stages.
First, the rigid displacement is estimated using surface curvatures. Second, the global
affine transformation is estimated using the ICP algorithm. Third, a local affine transfor-
mation (LAT) is attached to each point to locally deform the surface. LAT was also used
by Wakahara [10] to match and recognize handwritten characters. A dynamic window
with a gradually decreasing size is used to estimate the local affine transformation for a
point. This approach was improved by combining global and local affine transformations
to increase the robustness [11].

Although LAT is flexible enough to model local non-rigid deformation, there is no
standard way to define the neighborhood window size to estimate the parameters of
LAT. How to combine the global and local affine transformations is an open problem as
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well, so more flexible deformation models with closed-form representations are desired.
In the literature on interpolation and approximation, radial basis functions (RBF) with
different kernel functions, such as Thin Plate Spline (TPS) [20] and Gaussian RBF [21],
are widely used. Recently, the TPS deformation model began to be applied in point
matching [9, 17], because it can be formulated as an optimal solution of the bending
of a thin plate [20]. Chui and Rangarajan proposed an optimization based approach —
the TPS-RPM algorithm [17]. The bending energy of the TPS model and the average
Euclidean distance between two point sets are combined in an objective function. The
softassign technique and deterministic annealing algorithm are used to search for the
optimal solution, which significantly outperforms the ICP algorithm on non-rigid point
matching. Belongie et al. [9] proposed another method for non-rigid point matching. In
this approach, a shape context is assigned to a given point, which describes the relative
distribution of remaining points. After defining the similarity between two points based
on their shape contexts, the Hungarian algorithm [22] is used to search for the optimal
match between the two point sets. Similarly, the TPS model is used to bring two shapes
closer in each iteration.

More recently, Glaunes et al. [23] proposed another point matching approach. Taking
a point set as a sampling of the underlining distribution, they proposed a theory based on
diffeomorphisms on distributions. Their formulation reduces to an optimization problem
with a weighted summation of two parts: the energy associated with the deformation
and the distance between two point sets under this deformation. This is similar to the
objective function in [17], although no explicit deformation model is assumed. Instead, a
variational method is used to search for the optimal deformation. Experimental results
on synthesized data are encouraging, but more extensive tests should be performed to
show the effectiveness of their approach.

Another interesting work is the matching of articulated objects [4]. An articulated
object (such as a person) is composed with several rigid segments connected by pivot
points. The deformation of rigid segments can be modeled with an affine transformation.
A global hierarchical search strategy is used to search for and match pivot points, and
local matching of rigid segments is used to prune the search tree, thus reducing the
computational cost [4].

The remainder of this paper is organized as follows. In Section 2, we formulate point
matching as a graph matching problem. Section 3 describes our relaxation labeling based
graph matching approach. Shape deformation models, such as the affine transformation
and TPS, are discussed in Section 4, followed by a brief summary of our approach in
Section 5. We demonstrate the robustness of our approach with experiments in Section
6, and the paper concludes with a discussion of the future work in Section 7.

2 Formulation as a Graph Matching Problem

In this section, we formulate point matching as a graph matching problem. Suppose a
template shape T is composed with M points, Sp = {11,T5,---, Ty}, and a deformed
shape D is composed with N points, Sp = {D;, Dy, - -+, Dy }. We want to find a matching
function f : S < Sp between these two point sets, which is optimal for some metric. In
many applications, one-to-one matching is desired, but in general, the number of points
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in T"and D may be different. Even if two shapes have the same number of points, not all
points in one shape will have correspondence in the other shape. To solve this problem,
the concept of a dummy or nil point, is introduced. The point sets Sp and Sp are
augmented to S = {11,T5,---, Ty, nil} and S, = {D;, Dy, ---, Dy, nil} respectively.
A match between shapes T and D is f : ST, < S7,, where the match of normal points is
one-to-one, but multiple points may be matched to a dummy point.

Under a rigid transformation (i.e., translation and rotation), the distance between
any point pair is preserved. Therefore, the optimal match f is

f=argminC(T, D, f) 1)
where

2
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If M = N and no points are matched to dummy points, the summation of the first term
in (2) should be equal to the summation of the second term. Points, which are matched
to a dummy point, need special treatment in the above cost function. To make the
representation simple, we do not explicitly describe such treatment here. We will come
back to this problem later.

If non-rigid deformation is present, the distance between a pair of points cannot be
preserved. This is especially true for two points which are far apart. In many situa-
tions, however, the local neighborhood of a point may not change freely due to physical
constraints. Therefore, we define a neighborhood for point m as N,,. The neighborhood
relationship is symmetric, which means if i € N, then m € N;. Then, (2) can be modified
as

M 2
C(T,D,f) = Z Z (||Tm _TZ” - ||Df(m) - Df(Z)H) +
m=14EN,,
N 2
> 3 (1D = Dill = ITy-1tmy = Tr13) 1) (3)
n=1jEN,

The absolute distance of a pair of points is not preserved well under scale changes.
Therefore, we quantize the distance to two levels as

[0 ieN, _fo jen,
-zl ={ § (g Nt ad ID - ={ ] 1SN )

Then, (3) is simplified as

C(T,D,f) =23 > d(f(m), f@) + > > d(f~"(n), 7 (4)) (5)

m=14{EN, n=1jEN,



where
. 0 i€ Ny,
d(m, i) —{ 1 i¢ N, (6)

In order to deal with the case that a point may be matched to a dummy point, we let
d(.,nil) = d(nil,.) = d(nil,nil) =1 (7)

to discourage matching to dummy points.
In the following, we rewrite the objective function of (5), and interpret it as a graph
matching problem. First, we subtract a constant term from C(T, D, f).

C'(T,D,f) = C(I,D,f)— Z 21—221

- 212 —1+212 7)) — 1]
= - _IZNI o(f(m), f Z_: ZA; o(f 1)) (8)
where
8(i,§) =1 —d(i, j) (9)

Minimizing C(T, D, f) is equivalent to minimizing C'(T, D, f) since the difference be-
tween them is a constant. Therefore, the minimization problem of (1) is equivalent to
the following maximization problem:.

f=arg max S(T,D, f) (10)

where

M N

S(T,D, f) =23 > o(f(m), f@) + > > 6(f7(n), f7'() (11)

m=14i€E Ny, n=1jeNy,

This formulation can be interpreted as a graph matching problem. We can represent a
point set as a graph, where each point is a node in the graph and two nodes are connected
by an edge if they are neighbors. The dummy node is not connected to other nodes in
the graph. If connected nodes m and ¢ in one graph are matched to connected nodes
f(m) and f(i) in the other graph, 6(f(m), f(i)) = 1. Therefore, the optimal solution of
(10) is the one which maximizes the number of matched edges of two graphs.

Our definition of neighborhood is as follows. Initially, the graph is fully connected, and
we then remove long edges until a pre-defined number of edges are preserved. Suppose,
there are M nodes in the graph, the number of preserved edges is M X E,., where Eq,.
is a parameter in the range from five to nine in our experiments. With this neighborhood
definition, the graph representation of a point set is translation, rotation, and scale change
invariant. Fig. 1 shows a graph representation of a point set with E,,, = 7. We expect
points connected with an edge move together under deformation, so the structure of the
graph is preserved.



Figure 1: A point set (a) and its graph representation (b).

Graph matching (or more generally, attributed relational graph matching) is used
in [24] and [25] to match road maps extracted from aerial photographs. Their graph
definition is different from ours, where road intersections are nodes in the graph and two
nodes are connected by an edge if there is a road between two intersections. Such a graph
definition is natural for a road map, but errors in road detection will change the graph
structure. In our case, given an arbitrary set of points, there is no such natural definition
of connections among points. Graph matching is widely used in many fields, such as
computer vision and pattern recognition. There are various kinds of graph structures,
and many different metrics are available to evaluate a match between two graphs in the
literature [26]. Our graph representation and the corresponding matching metric are
derived from the observation (or assumption) that non-rigid deformation will not change
the neighborhood of a point significantly.

3 Relaxation Labeling for Graph Matching

As previously stated, graph matching is an NP-hard problem. Global optimal approaches,
such as exhaustive or branch-and-bound search, are only applicable to graphs of a small
size (for example, less than 20 nodes) [13]. Many local optimal graph matching algorithms
have been proposed in the literature. Among them, the relaxation labeling technique is
widely used [24,27]. Since it converges to a local optimal solution depending on the initial
estimate, a good initialization is crucial to achieve a good result. In this paper, we use
the shape context distance to initialize the matching of two graphs.

3.1 Matching Probability Matrix

We can represent the matching function f in (10) with a set of supplemental variables,
which are organized as a matrix P with dimension (M + 1) x (N + 1).

bPix - DPiN | Pipni
P=| - ‘ ‘ (12)
Pyvi o0 PMN | PMnil
Pnitg *° Pnil,N ‘ 0



Figure 2: Shape context of a point. (a) Basic shape context. (b) Our rotation invariant
shape context. The point labeled with * is the mass center of the point set.

If point 7;, in the template shape 1" is matched to point D, in the deformed shape D,
then P,,, = 1, otherwise P,,,, = 0. The last row and column of P represent the case that a
point may be matched to a dummy point. Matrix P satisfies the following normalization
conditions

N+1
> Ppp=1 form=1,2,---,M (13)
n=1
M+1
> Puyp=1 forn=1,2,--- N (14)
m=1

Using matrix P, the objective function of (11) can be written as

M N

S(T’D’P):2Z Z Z Z Pmnpij (15)

m=14iEN,, n=1 jEN,

Since P, € {0,1}, searching for an optimal P which maximizes S(T, D, P) is a hard
discrete combinatorial problem. In this paper, we use relaxation labeling to solve the
optimization problem, where the condition P, € {0,1} is relaxed as P, € [0, 1] [27].
After relaxation, P,,, is a real number, and the problem is converted to a constrained
optimization problem with continuous variables.

3.2 Initialization with Shape Context Distance

The performance of relaxation labeling depends heavily on the initial value of the match-
ing probability matrix P. We need a good initial measure of the matching probabilities.
One option is to assign an attribute, such as the color or intensity gradients of the pixel,
to a point if it is extracted as a pixel in an image [28]. We can then compute the similarity
between a pair of points, and convert it to a measure of the matching probability. If a
set of points is given without any additional information, the shape context provides an
effective way to compute the similarity between two points [9]. In this paper, we use the
shape context distance to initialize the point matching probabilities. If other attributes
of a point are available, they can be easily incorporated into our framework.

To extract the shape context of a point, an array of bins is put around the point, as
shown in Fig. 2a. The number of points inside each bin is calculated as the context of
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(a) (b)

Figure 3: Point matching probability matrix P. The matching probabilities to a dummy
point are not shown. (a) Initial probabilities using the shape context distance. (b) After
300 iterations of relaxation labeling updates.

this point. Therefore, the shape context of a point is a measure of the distribution of
other points relative to it. Bins which are uniform in log-polar space are used to make
the descriptor more sensitive to positions of nearby points than to those of points far
away. Five bins for the radius and 12 bins for the rotation angle are used throughout
our experiments. Consider two points, m in one shape, and n in the other shape. Their
shape contexts are h,,(k) and h,(k), for k = 1,2,..., K, respectively. Let C,,, denote
that cost of matching these two points. As shape contexts are distributions represented
as histograms, it is natural to use the x? test statistic [9]

1 & [hm(k) = ha(R))?
Crmn = 2 ,;1 P (k) + hoy ()

(16)

The Gibbs distribution is widely used in statistical physics and image analysis to relate
the energy of a state to its probability [29]. Taking the cost C,,, as the energy of the
state that points m and n are matched, the probability of the match is

Pmn o< efc'mn /Tinit (17)

Parameter 7;,;; is used to adjust the reliability of the initial probability measures, where
Tinit € [0.05,0.1] is appropriate according to our experiments. We set the probability
for a point matching to a dummy point, P, ni or Py, to 0.2. Experiments show that
our approach is not sensitive to this parameter. Fig. 3a shows the initial matching
probability matrix P of two shapes.

It is obvious that the shape context is translation invariant. Using bin arrays with
an adaptive size according to the mean point distance of a shape, the shape context is
scale change invariant too [9], but it is sensitive to large rotations. In some applications,
rotation invariance is required. Our graph representation is rotation invariant, so we need
a rotation invariant initialization scheme. A complete rotation invariant shape context
was proposed using the tangent direction at each point as the positive z-axis for the
local coordinate system [9]. One drawback of this approach is that the tangent direction,
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defined for gray-scale images, is not applicable for binary images. Furthermore, if only the
point set is given without accessing the original image, we cannot estimate the tangent
direction. Another drawback is that as a first-order derivative operation, the estimate of
the tangent direction is sensitive to noise. Instead, in this paper, we use the mass center
of a point set as a reference point, and use the direction from a point to the mass center as
the positive z-axis for the local coordinate system. Our rotation invariant shape context
is shown in Fig. 2b. If there is zero mean white noise in point position measurements,
after averaging, the effect of noise to the mass center is reduced. Therefore, our approach
is more robust than the tangent direction based approach under noise.

3.3 Relaxation Labeling

Relaxation labeling was first proposed in a seminal paper by Rosenfeld, Hummel, and
Zucker in mid-1970s [27]. The basic idea is to use iterated local context updates to
achieve a globally consistent result. Their updating rule is !

PTTLTLSTTLTL

Pmn:: N P g
j=14+ mj~rmj

(18)

where S,,, is a support function of the match between points 7;, and D,,. It represents
how much support the current match gets from its neighbors. The denominator is used
to enforce one normalization constraint.

In the original paper, S, is defined heuristically, although with ad hoc heuristic
arguments, a variety papers later reported on the practical usefulness of the algorithm
(see [30] for a review and an extensive bibliography). The success in real applications
and the heuristic flavor of the algorithm motivated investigators to establish a theoretic
foundation. There are two different approaches. Some have tried to set the labeling
problem within a probabilistic framework using Bayesian analysis [24,31]. The Bayesian
theory, however, can only explain one iteration of the relaxation process. An alternative
explicitly defines some quantitative measure of consistency to be maximized, and formu-
lates the labeling problem as one of optimization [32,33]. Projected gradient methods
are often used to optimize the objective function. In these theories, the support function
Smn is defined as the derivative of the objective function with respect to P, [33]. The
updating rule of the projected gradient methods is

P =P +~Q(S) (19)

where v is the updating step and S is a matrix composed with elements S,,. Q(S) is
a projection operation of S to limit the range of P, to [0, 1] and enforce normalization
constraints. In the case of boundary points (i.e., having at least one component of the
probabilities equal to zero or one) the projection operation is much more complicated
and the procedure becomes computationally expensive. Furthermore, the updating step
v is difficult to tune. An increase in the objective function is guaranteed only when

'In the original paper, the support function S is defined in a heuristic way in the range of [—1,1].
In order to satisfy P > 0 after updating, 1 + S is used to substitute S in both the numerator and
denominator in the updating rule [27].
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infinitesimal steps are taken, and searching for the optimal step size in each iteration is
computationally expensive. Recently, Pelillo [16] showed that the original updating rule
in (18) does converge to a local minimum if (a) the objective function is a polynomial with
nonnegative coefficients, and (b) S,,, is defined as a gradient of the objective function.
The advantages of this updating rule, compared with the projected gradient methods, are
(a) computationally expensive projection operations are avoided, and (b) it is parameter
free. 'We tried several updating rules compared in [34] and found that the updating
formula of (18) is robust and achieves better results. With our objective function of (15),

S,nn takes the form of
i€Nm jEN
Since Sy, > 0, the constraint that P, € [0, 1] is satisfied after normalization.

In previous applications of the relaxation labeling technique, many-to-one match is
allowed [14,15,35-37]. Only one-way normalization constraint, either (13) or (14), is
enforced. Unfortunately, in many applications, one-to-one match is desired. Projected
gradient methods may be modified to enforce one-to-one match. The projection oper-
ation, however, is computationally expensive and it is unclear how to find a projection
satisfying two-way normalization constraints. In this paper, a different approach based
on alternated row and column normalizations of the matching probability matrix P is
used to enforce one-to-one match [17]. A nonnegative square matrix with each row and
column summing to one is called a doubly stochastic matrix. Sinkhorn showed that the
iterative process of alternated row and column normalizations will convert a matrix with
positive elements to a doubly stochastic matrix [38]. The conclusion can be extended to
a positive non-square matrix. We call a matrix where each row and column (except the
last row and column) sums one a generalized doubly stochastic matrix. We can show that
alternated row and column normalizations (except the last row and column) of a positive
matrix will result in a generalized doubly stochastic matrix (refer to the Appendix for a
proof). This technique is also used in the softassign point matching approach without
proof [17].

Fig. 3a shows the initial value of the point matching probability matrix P of two
shapes. After each relaxation labeling update, we perform alternated row and column
normalizations to matrix P. Generally, a few rounds are enough to bring a matrix close
to a generalized doubly stochastic matrix. After 300 iterations of relaxation labeling
updates, the ambiguity of matches decreases. As shown in Fig. 3b, most elements of the
matrix converge to zero or one.

After relaxation labeling updates, points with maximum matching probability less
than P, (Ppin = 0.95) are labeled as outliers by matching them to dummy points. The
matched point pairs are used to estimate the parameters of the affine or TPS deformation
model, and the estimated parameters are used to transform the template shape to bring
it closer to the deformed shape. In some application scenarios (e.g., the experiments
in Section 6.1), we may want to find as many matches as possible. Unfortunately, the
ratio of points matched to dummy points by the relaxation labeling updates cannot
be controlled directly. After several iterations of correspondence and transformation
estimations, two point sets may be close to each other. Therefore, in the last round, we
find the optimal one-to-one match by minimizing the summation of Euclidean distances
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from the transformed template shape to the deformed shape.

M
D= |IT; — Dyl (21)
m=1

where 7 is a point from the template shape after transformation. The optimal match
f can be found using the Hungarian algorithm [22].

3.4 Relationship to Previous Work

The relaxation labeling technique has been used for shape matching [14,15,35-37], shortly
after it was proposed. Among them, those works on point matching [14,15] are closely
related to our approach. Several works on relaxation labeling based graph matching
also appear in the literature [24,25,39]. A difference to the previous applications of
relaxation labeling [14,15] is that we use it to solve a constrained optimization problem.
With support function defined as the derivative of the objective function, the relaxation
labeling process is guaranteed to converge to a local optimal solution [16,33]. In the
previous work, relaxation labeling is used in an ad hoc way without an objective function
to be optimized, so there is no guarantee about the quality of the solution. It was found
in experiments that, after some point, further iterations of relaxation labeling updates
may deteriorate the performance [34]. The second difference is that one-to-one match
is enforced by alternated row and column normalizations of the matching probability
matrix. Therefore, unlike the previous work where only one-way normalization was
enforced, two-way normalization constraints are satisfied in our approach.

The relaxation labeling method used in this paper is similar to the well-known soft-
assign technique [5,17,40]. Both of them convert the discrete combinatorial optimization
problem to one with continuous variables by assigning a probability measure to a match.
The procedure is called “relaxation” or “soft” in these two techniques respectively. In
softassign, however, in order to achieve a firm or unambiguous solution (with matching
probabilities be zero or one), a penalty term is added in the objective function to encour-
age an unambiguous solution. An appropriate weight of the penalty term is necessary
to achieve good results [17]. On the other hand, for relaxation labeling, it has been
shown that each unambiguous consistent solution is a fixed point. The relaxation label-
ing process will converge to it, starting from a nearby point [16,33]. Although there is no
guarantee that the relaxation labeling process will converge to an unambiguous solution
starting from an arbitrary initialization, our experiments show that most elements of
matrix P do converge to zero or one. Therefore, a penalty term is unnecessary for our
objective function.

4 Shape Deformation Models

It is difficult to achieve a good match for shapes under both rigid and non-rigid distortions
with a single approach. The strategy of iterated point correspondence and transforma-
tion estimations is widely used for non-rigid shape matching. In our approach, for the
first iteration, the affine transformation between two shapes is estimated and corrected.
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Instead of using the Least Squares (LS) estimator to estimate parameters of the affine
transformation [9], a more robust Least Median Squares (LMS) estimator is used. In
the following iterations, the Thin Plate Spline (TPS) deformation model is exploited to
bring two shapes closer. Our approach is similar to [9] except that a more robust LMS
estimator is used to estimate the affine transformation, instead of the LS estimator.

4.1 Affine Transformation Estimation Based on LMS

The LS estimator is widely used to estimate transformation parameters. Suppose point
(x;,y;) is matched to point (u;,v;), for i = 1,2, -+, n, the optimal parameters of the affine
transformation are those which minimize the summation of squares of the regression

errors.
(ui>—A<xi>—T
Ui Yi

where A is a 2 x 2 matrix representing the rotation and anisotropic scale changes, and 71" is
a translation vector. One advantage of the LS estimator is that closed-form solutions are
available [41]. It is, however, sensitive to outliers in the matching [42]. The breakdown
point is often used to evaluate robustness of an estimator under outliers, which is defined
as the smallest proportion of observations that must be replaced by arbitrary values in
order to force the estimator to produce values arbitrarily far from the true values [43].
The breakdown point of the LS estimator is 0%. Furthermore, it is generally difficult to
detect outliers based on the regression residual errors since they may spread over all of
the points [42].

In general, the results of the first iteration of point matching may be noisy with
many errors, so a more robust estimator is required. Several robust regression methods
have been proposed in the statistics literature. Among them, the Least Median Squares
(LMS) estimator achieves the highest possible break down point, 50% [42]. Instead of
minimizing the summation of squares of regression errors, the LMS estimator minimizes
the median of the regression errors.

A, T = argmin median{H( i > —A ( i ) -T
AT V5 Yi

There are no closed-form solutions for (23). Normally, we randomly select a subset
with three matched pairs, which can determine an affine transformation, and using the
estimated parameters, we can calculate the median of the regression errors. Iterating the
random selection procedure, the optimal solution of (23) can be achieved. Suppose, there
are n matched pairs and about 50% of them are wrong (matching outliers). In the worse
2 .
case, we must select at least < g — n?/) > + 1 different subsets to ensure at least
one subset without outliers is selected. This is too pessimistic. In real applications, we

only need to exam a small number of subsets. After examining k& subsets, the probability

k
of having at least one good subset is 1 — [1 - ( né? / < g >] (assuming sampling

n 2
AT = argrglinz
i=1

in (22)

2

fori:1,2,---,n} (23)

with replacement). For example, let n = 200, the probability of getting at least one good
13



subset in 50 random selections is 99.8%. The LMS estimator can be used to estimate the
affine transformation without knowing the correspondence between two point sets [44].
Without rough correspondence, however, a large number of subsets need to be examined.

4.2 TPS Deformation Model

The TPS model is often used for representing flexible coordinate transformations, because
it is parameter free with a physical explanation and closed-form representations [20]. It
has been used in non-rigid shape matching in [9] and [17]. Suppose z; is the target
function value at location (x;,y;), for i = 1,2,---,n. Two TPS models are used for the
2-D coordinate transformation. Suppose point (x;,y;) is matched to (u;,v;), we set z;
equal to u; and v; in turn to obtain one continuous transformation for each coordinate.
The TPS interpolant f(z,y) minimizes the bending energy

=1, <8x2>2 (ggy)l <%>2d$d?)’ (24)

and has the solution of the form

flz, y)—a1+axl‘+ayy+2wz (i, yi) = (x,9)1]) (25)
=1

where U(r) is the kernel function, taking the form of U(r) = r?logr?. The parameters of
the TPS models w and a are the solution of the following linear equation

Exin @

where Ki; = U(||(zs,y:) — (xj,95)||), the ith row of P is (1,2;,y;), w and z are column
vectors formed from w; and z; respectively, and a is the column vector with elements
a1, g, Qy.

If there are errors in the matching results, we use regularization to trade off between
exact interpolation and minimizing the bending energy as follows.

n

Hy = [z — f(xi,y)]” + M (27)

1=1

where A is the regularization parameter, controlling the amount of smoothing. The
regularized TPS can be solved by replacing K in (26) with K + I, where [ is the n x n
identity matrix [45,46]. We set A = 1 in the following experiments.

5 Summary of Our Approach

Following is a brief summary of our approach.

Input: Two point sets, T}, T, ..., Ty, from the template shape T, and D, D,,..., Dy
from the deformed shape D.
Qutput: The correspondence between two point sets.

14



1. Set the transformed template shape 7™ as 7.
2. Set iteration number to one.

3. Calculate the shape context for each point in 7% and D, and use (16) to calculate
the distance between each point pair 7}, and D,,.

4. Use (17) to initialize the matching probability matrix P, and convert it to a gen-
eralized doubly stochastic matrix by alternated row and column normalizations.

5. Use (18) to update the matching probability matrix R (R = 300) times. After each
update, convert matrix P to a generalized doubly stochastic matrix.

6. If the iteration number is one, use LMS to estimate the affine transformation be-
tween 17" and D.

7. Otherwise, use (26) to estimate parameters of the TPS deformation model between
T and D.

8. Transform template point set T" to 7™ using the estimated deformation parameters.

9. Increase the iteration number by one. If the iteration number is less than I,,,,
(I;maz = 10), go to step 3.

Suppose both shapes have N points, the computation cost of shape context distances
is in the order of O(N?). Relaxation labeling updates will take O(N?) time. The compu-
tational complexity of the algorithm may be largely dependent on the implementation of
the spline deformation, which can be O(N?) in the worst case. With our un-optimized
C++ implementation, matching two shapes (each with 100 points) takes about 1.6 sec-
onds on a PC with a 2.8GHZ CPU.

6 Experiments

6.1 Basic Examples

First, we test our algorithm on the test samples used in [17], and compare our results with
two other algorithms: the shape context [9] and TPS-RPM algorithms [17]. The TPS-
RPM algorithm and our relaxation labeling based approach may reject some points as
outliers by matching them to a dummy point. There are no parameters available in either
algorithm to adjust the ratio of rejected points explicitly. In these examples, the template
and deformed shapes have the same number of points. In order to achieve a direct and
fair comparison, we prefer to match as many point pairs as possible without rejection.
The shape context algorithm can achieve this by setting the outlier ratio to zero. For
the other two algorithms, after point matching and transformation are complete, we use
the approach discussed in Section 3.3 to minimize the summation of Euclidean distances
between the transformed template point set and the deformed point set (see, Eq. (21)).

Fig. 4 shows the point matching results of three algorithms on a pair of curves
and two pairs of closed contours. As shown in the left column, all algorithms achieved
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Figure 4: Point matching results on several test samples. Top row: our approach. Middle
row: the shape context algorithm. Bottom row: the TPS-RPM algorithm.
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Figure 5: Handwriting matching. Left column: two handwritten initials from the same
person. Middle column: points sampled from the skeletons (each with 200 points). Right
column: point matching results using our approach.

Figure 6: More examples of handwriting matching using our approach.

good results for the pair of curves even though the deformation between them is large.
Neighboring points may swap their matches, however, for the TPS-RPM algorithm. For
the first pair of closed contours, all algorithms achieved reasonable results, but the shape
context algorithm made a few matching errors as shown in the middle column of Fig.
4. Since the rotation between two shapes is large for the second pair of closed contours,
the rotation invariance shape context is used for initialization in our approach and the
shape context algorithm. Both our approach and the TPS-RPM algorithm achieve good
results and preserve the sequential ordering of points. The result of the shape context
algorithm is not as good: neighboring points in one shape may be matched to points far
apart in the other shape.

Handwriting is a non-rigid shape that is of particular interest. The left column of
Fig. 5 shows two samples of handwritten initials from the same person. We see that
the structural change for handwriting is large: the characters overlap each other in the
first sample, but they are well separated in the second sample. We randomly sample 200
points from the skeletons of the handwriting, as shown in the middle column of Fig. 5.
The right column of Fig. 5 shows the point matching results using our approach. Points
labeled with green color are outliers rejected by our algorithm. On the D’s, most points
are assigned with correct correspondence. The touching parts of the S are assigned with
low matching probabilities, therefore rejected as outliers. More examples of handwriting
matching are shown in Fig. 6.
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Figure 7: Chui-Rangarajan’s synthesized data sets. The template point sets are shown
in the first column. Column 2-4 show examples of target point sets for the deformation,
noise, and outlier tests respectively.

6.2 Experiments on Chui-Rangarajan’s Synthesized Data

Synthetic data is easy to obtain and can be designed to test a specified aspect of an algo-
rithm. We test our algorithm on the same synthesized data as in [9] and [17]. There are
three sets of data designed to measure the robustness of an algorithm under deformation,
noise and outliers. In each test, the template point set is subjected to one of the above
distortions to create a “target” point set (for the latter two test sets, a moderate amount
of deformation is present). Two shapes (a fish and a Chinese character) are used, and 100
samples are generated for each degradation level. We then run our algorithm to find the
correspondence between these two sets of points and use the estimated correspondence
to warp the template shape. The accuracy of the matching is quantified as the average
Euclidean distance between a point in the warped template and the corresponding point
in the target. Alternative evaluation metrics are possible (e.g., the number of correctly
matched point pairs), but in order to compare our results directly with two other algo-
rithms, we use the above evaluation metric as in [9] and [17]. Several examples from the
synthesized data sets are shown in Fig. 7.

The mean and variance of the performance of three algorithms (the TPS-RPM, shape
context algorithms, and our approach) are shown in Fig. 8. Our algorithm performs best
on the deformation and noise sets. For the outlier test set, however, there is no clear
winner. The TPS-RPM algorithm outperforms our algorithm on the Chinese character
shape under large outlier ratios. Since points are spread out on the Chinese character
shape, when a large number of outliers are present, the neighborhood of a point changes
significantly (as shown in Fig. 7), which violates our assumption. On the contrary, points
on the fish shape are clustered, and the neighborhood of a point is preserved well even
under a large outlier ratio, as shown in the last column of Fig. 7. Therefore, better
results are achieved by our algorithm on this shape.

In Fig. 8, the variance of all algorithms is large. Therefore, a statistical analysis must
be applied to ascertain whether the difference between these algorithms is significant.
Mean and variance can only fully characterize a Gaussian distribution. Fig. 9a and
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Figure 8: Comparison of our results (o) with the TPS-RPM (%) and shape context
(o) algorithms on the Chui-Rangarajan’s synthesized data. The error bars indicate the
standard deviation of the error over 100 random trials. Top row: the shape of fish.
Bottom row: the shape of a Chinese character.

b show the error histograms of the shape context algorithm and our approach. The
histograms are generated on 100 trials of the fish shape under the deformation level of
0.05. The distributions are far away from a Gaussian distribution. Some challenging
samples significantly deteriorate the performance and increase the variance, and the
performance of two algorithms on the same sample is not independent. Fig. 9c¢ shows
the histogram of paired differences between two algorithms (the error of the shape context
algorithm minus that of our approach). The two algorithms have the same performance
for about one third of the test samples, and our approach outperforms the shape context
algorithm on most of the remaining samples.

Since the distribution of errors is not Gaussian, we use the Wilcoxon paired signed
rank test, which is distribution free and powerful [47]. In the Wilcoxon test, paired dif-
ferences are formed, and the absolute values are ranked. Where ties occur, the average
of the corresponding ranks is used. If the difference between two measures is zero, this
sample is excluded from the analysis. The sum of the ranks with a positive sign and the
sum of the ranks with a negative sign are calculated. The test statistic is the smaller of
these two sums. Table 1 shows the statistical analysis (with two-sided significance level
of 0.01) of the performance of our approach compared with two other algorithms. Here,
+ (—) means the improvement (deterioration) of our approach is statistically significant
compared with the other algorithm. And = means there is no significant difference be-
tween two algorithms. The statistical test verifies that the improvement of our approach
on most data sets is significant.
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Figure 9: Histogram of errors. (a) The shape context algorithm. (b) Our approach. (c)
Paired differences between two methods (the error of the shape context algorithm minus
that of our approach).
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Table 1: Wilcoxon paired signed rank test. 4+, — and = mean the former algorithm is
better, worse, or no difference than the latter respectively.

Fish Chinese Character
Deformation | Noise | Outlier Deformation | Noise | Outlier
Oursvs. Shape Context | ==+ ++ | =Ff ++++ | +++++ | ==+ ++ [ t=++++ ][ +++==
Oursvs. TPSRPM | + + +++ | ++++=+ | +++++ | +++++ | t+++++ ]| +==--

6.3 Rotation Invariant Matching

In some applications, rotation invariance is a critical property of a shape matching al-
gorithm. In the following experiments, we test our algorithm under rotations using
synthesized data of the same fish and Chinese character shapes. A moderate amount of
non-linear deformation is applied to a shape, and the ground-truthed correspondences
are used to correct the rotation introduced in the deformation. We then rotate the de-
formed shape. The probability of selecting a clockwise or counterclockwise rotation is
equal. Six rotation degrees are used: 0, 30, 60, 90, 120, and 180. One hundred samples
are generated for each rotation. The top row of Fig. 10 shows two synthesized samples.

In the following experiments, for the first iteration, the rotation invariant shape con-
text distance is used to initialize the graph matching in our approach. The rotation
between two shapes is corrected by the affine transformation in the first iteration. Af-
ter that, the normal shape context distance is used. Quantitative evaluation results are
shown in the bottom row of Fig. 10. We can see that our method is truly rotation invari-
ant, and it consistently outperforms the shape context algorithm. TPS-RPM, however,
can only tolerate a rotation up to 60 degrees. The TPS-RPM algorithm often fails to
converge to a useful solution if rotation with any degree is allowed [17], so a parameter
Ay is used to penalize a large rotation in the TPS-RPM algorithm. If A\s is set to zero,
its performance deteriorates significantly, much worse than our approach at any level
of rotation. Therefore, the default setting of Ay (A; = 0.01) is used in this comparison
experiment for the TPS-RPM algorithm.
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Figure 10: Comparison of our results (o) with the TPS-RPM (%) and shape context (o)
algorithms under rotation. Left column: the shape of fish. Right column: the shape of
a Chinese character. Top row: synthesized samples. Bottom row: mean and variance of
errors.

7 Conclusion and Future Work

In this paper, we have presented a relaxation labeling based point matching algorithm
for non-rigid shapes. Based on the assumption that the neighborhood of a point does not
change significantly after deformation, we formulate point matching as a graph match-
ing problem. The shape context distance is used to initialize the matching of graphs,
followed by relaxation labeling updates. Experiments on a public data set show that
our approach clearly outperforms the shape context and TPS-RPM algorithms under
non-rigid deformation and noise.

In this work, the relaxation labeling method is used to solve the constrained optimiza-
tion problem. It is by no means the best approach. We are testing other optimization
methods such as simulated annealing, genetic algorithms, and graduated non-convexity
methods. Our graph matching formulation is applicable for both 2-D and 3-D shapes.
Using the shape context distance for initialization, we only demonstrate it on 2-D shapes,
since the original shape context is only defined for 2-D point sets. We will test the effec-
tiveness of our approach for 3-D shape matching by extending the shape context to 3-D
point sets. Other initialization methods are possible if more information is available.

A reference C++ implementation of our approach is available under the terms of the
GNU General Public License (GPL) at http://www.enee.umd.edu/~zhengyf/
PointMatching.htm.
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Appendix

Sinkhorn showed that iterated alternative row and column normalization will convert an
N x N matrix with positive elements to a doubly stochastic matrix [38]. In our relaxation
labeling approach, we perform iterated alternative row and column normalization (except
the last row and column) to a non-square K x N (K # N) matrix A. The purpose of
this appendix is to show that this approach is mathematically sound: the process will
converge to a unique matrix 7T}, such that each row and column of T4 sums one (except
the last row and column). The proof in this appendix follows the idea of Sinkhorn.
In [38], several important steps are skipped and a few typoes exist. In this appendix
more cases are discussed to make Sinkhorn’s conclusion more general. First, we will give
a formal definition of our generalized doubly stochastic matrix..

DEFINITION 1. A K x N matrix A is called a generalized doubly stochastic matrix

if
K
> aj=1 forj=1,2,...,N—1 (28)
=1
N
> a;=1 fori=1,2,....K -1 (29)
j=1

The operation of row normalization can be represented as a left multiplication of A
with a diagonal matrix, and the operation of column normalization can be represented
as a right multiplication of A with another diagonal matrix. Multiple row (column)
normalization matrices can be combined as D; (D,). Therefore, the overall iterated row
and column normalization can be represented as T4 = D;AD,. The following theorem
establishes the uniqueness of such representation.

Theorem 1 To a given strictly positive K x N matriz A there corresponds exactly one
generalized doubly stochastic matriz Ty which can be expressed in the form Ty = D1 AD,
where Dy and Do are diagonal matrices with positive diagonals.

D1 = d’iag{du, dlg, ey dl,K—l; ]_} and D2 = diag{d21, dgg, ey d27N_1, 1} The matrices
Dy and Dy are unique.

Proof: Suppose there exist two different pairs of diagonal matrices D1, D, and Cf,
Cs such that P = C1ACs and Q = D;AD, are both generalized doubly stochastic.
Then, we can write Q as Q = D;C;'PCy;'D,. Let E = D;C; ! and F = C;'D,, then
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Q = EPF. SUppOSG E = diag{€1,€2, e, EK1, ]_} and F' = diag{fl,fg, .. -;fN—l; ]_}, Q
can be expanded as

erfiPu e1foPro cee elfolpl,Nfl erPin
ea f1Po €2 fo Py cee €2fN—1P2,N—1 eaPon
Q= : : : : : (30)
€K—1f1PK—1,1 €K—1f2PK—1,2 e €K—1fN—1PK—1,N—1 €K—1PK—1,N
J1Pr1 J2Pk - In-1Pg N1 Pg n

The summation of the ith row of () equals 1, for 1 <1 < K — 1.
ei(fiPin+ foPo+ ...+ fnaPiv 1+ Piv) =1 (31)

Since Zévzl P;; =1 and P;; > 0, 1/e; is a convex combination of {f;,1}. Therefore,

1
min{l, f;} < — <max{1, f;} fori=1,2,...,K -1 (32)
j e j

)

Similarly, we can get

1
min{1,e;} < 7 < max{l,e;} forj=1,2,....N—1 (33)
13 ] 13

There are three cases: 1) max;e; < 1; 2) min;e; > 1; and 3) min;e; < 1 < max;e;.
Let’s discuss the first case that max; e; < 1. Using the second inequality in Eq. (33), we

get f; > 1. Then second inequality in Eq. (32) becomes 1 < e; max; f;. It follows that

1< mz_in ¢; max f (34)
Similarly, the first inequality in Eq. (33) becomes f; min; e; < 1. Therefore,

rniin ¢i Max fi <1 (35)
Combining the above two inequalities, we get

miin ¢i Max fi=1 (36)

Let consider the summation of the row of ) corresponding to the minimum e;. Sup-
pose e; = min; e;

1 = e(fiPn+ foPio+ ...+ fno1Pivor + Pin)
< 61[mj<‘,inj(P11+P12+---+P1,N71)+P1N]
< elmjaxfj(Pn—i-Plg—i-...—i-PlN)
< e mjaxfj
— 1 (37)
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The equality holds if and only if f; = fo =--- = fy_1 = 1. And considering the column
with the maximum f;, we get e = ey = -+ = eg_1 = L.
For the second case, min; e; > 1, it is easy to verify that

maxe; min f; =1 (38)
i j

And for the last case, min;e; < 1 < max;e;, we can get both equalities (36) and (38).
Following similar arguments, we can show that the equalities f; = fo =+ = fnv_1 =1
and e; = ey = --- =eg_1 = 1 hold for all cases. It follows that D; = C} and Dy = Cy,
and P = (). That means such factorization is unique and the resulted generalized doubly
stochastic matrix is unique too.

Theorem 2 The iterative process of alternately normalizing the rows and columns (ex-
cept the last row and column) of a strictly positive K x N matriz is convergent to a
strictly positive generalized doubly stochastic matrix.

Proof: The iteration produces a sequence of positive matrices which alternately have row
(except the last row) and column (except the last column) sums one. We will show that
the two subsequences which are composed respectively of the matrices with row sums one
and the matrices with column sums one each converge to a positive generalized doubly
stochastic limit of the form D;AD,. The uniqueness part of Theorem 1 will guarantee
two limits are actually the same. In the following, we only show the convergence of
the subsequence of the matrices with column sums one. The convergence of the other
subsequence is easy to show following similar arguments.

Let {A,} = {(an;;)} be the sequence with column sums one (except the last column),
and A, have row sums A\,i, Ap2,..., Ay k—1. After row normalization, we calculate the
column sums 6,; (for 1 <j < N —1)

K-1

Onj = D nij/Anj + ani; (39)

i=1
Since Y| an;; = 1, 8, is a convex combination of {1/\,;,1}. It follows

1 1

max(L, (D} = 0 S min{L o (m)}

for j=1,2,...,N—1 (40)

where the m and M respectively label minimal and maximal quantities relative to a given
A,,. Similarly, since A, 41, of matrix A, is a convex combination of {1/6,;,1}, it follows

that
1 1

< Mg < —
max{1,8,(M)} = """ = min{1,6,(m)}
There are three cases: 1) A\,(m) > 1; 2) A\, (M) < 1; and 3) A\,(m) <1 < A\, (M). For
the first case A\,(m) > 1, from Eq. (40) we get 1/A,(M) < d,; < 1. Using Eq. (41), we
get

fori=1,2,....,K —1 (41)

1 < Mg S Au(M) (42)

24



Therefore,
case 1: A\(m)>1 = 1< A\,11(m) and 1 < A1 (M) < A\ (M) (43)
Similarly

case 2: M(M) <1 = Xu(M) <1 and N, (m) < Appi(m) <1 (44)
case 3: A\, (m) <1<\ (M) = A(m) < Apa(m) <1< A1 (M) < A\ (M) (45)

In the following, we want to show that for case 1 and 3, A, (M) left converges to 1 (from
a value larger than 1); and for case 2 and 3, A,(m) right converges to 1 (from a value
smaller than 1). If the convergence holds, using Eq. (40), it follows that ¢,; converges to 1
too. Therefore, the sequence of matrices A, converges to a generalized doubly stochastic
matrix.

Let a, be the minimal element of A, (excluding the last row and column), we want
to show that a, > 0 for all n. Starting from A; = {ay;;}, we can combine all row
normalizations of row i (i < K) up to nth iteration as x,; = [AjAei -+ Api] ' For the
last row x,,x = 1. All column normalization of column j (j < n) up to nth iteration is
combined as y,; = [01;02; - - 0nj] *. For the last column y,y = 1. Since summation of
column j of A, equals one, >% TniijYn; = 1, for 7 =1,2,..., N — 1, we get

1 1 1
Yng = S S (46)

2 01 Tni — A14jTpi — Q1T

In particular y,; < 1/[a12,(M)]. Since

N
Z TniQ1ijYnj = )\n+1,i (47)

J=1

As we can see from (43), (44) and (45), for all three cases, A,;1, is bounded away from
0. Let Apq1 > A, it follows that

A
Tpi > S > a3 A\ (M)/N. (48)
The last inequality is derived from the fact that ay;; < 1. Also y,; = 1/ a12n >
1/[Nz,(M)] and we see that a,1,; = Tpni@1iYnj > a1A/N? = a > 0. Therefore, a,, > 0
for all n.
For case 1 and 3, we want to show that A, (M) right converge to 1. It is clear that
A (M) — 1+ ¢ where ¢ > 0. For convenience set A\, (M) =1+ ¢,.

K-1

QAngj Angj QAngj
5nj = E N +anKj = E N + g N +anKj
i=1 /‘ni PAni <1 7' i >1 '
1 1 SR i + Cn Tingo1 Gnig
_ =1 “'ni) n 1A >1 Ynig
> Y pt T Y Gp ot ———nj = ns (49)
1+¢ 1+¢ 1+¢
1A <1 MG Api>1 n n
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Using the fact that }; a,;; = 1,

1+ Cn Zi:/\m>1 Qnij > 1+ CnGp

Opi > 50
"= 1+¢, - 1+e¢, ( )
It follows that
N-1 N-1
nij (niN 1+¢, Unij  QniN
Agli = < 51
i ; )\man] )\nz -1 + cpap i—1 )\m )\m ( )
‘]7
Since 0 < a,, < 1, therefore (1 +¢,)/(1 + cyay,) > 1, thus
1+ Cn X Angj aan
Mati < 52
b= 1+ cpay (2 Ani ( )
Because Z;-Vﬂ nij/Ani = 1 (the row summation after row normalization), therefore,
1+¢, 1+¢,
; 53
nthi = + cpan 1+cya (53)
The above inequality holds for all i, particularly,
1+¢,
1 <A M) < 54
e A (M) < Tt (54)

Since ¢, — ¢, the above condition holds if and only if ¢ = 0. Therefore A, (M) — 1.
For case 2 and 3, we need to show that A, (m) left converge to 1. Let A,(m) — 1 —d
where d > 0, and A,(m) =1 — d,,, then

QAngj Angj —d an
Onj = /\”+ > /\”+anMJ_1 SO nijt Y. Qi+ Gun = T
A<l ML N >1 i T Ani <1 iApi>1 — Un
(55)
And 1—d, 1-d
1—d> Ayy1(m) > — — (56)

1—-d,a, = 1—d,a
Since d,, — d, the above condition holds if and only if d = 0. It follows A, (m) — 1. This
completes the proof.
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